GERAK HARMONIK SELARAS

GETARAN SELARAS ( HARMONIK)

 

Getaran selaras (harmonic)adalah gerak proyeksi sebuah titik yangbergerak melingkarberaturan, yang setiap  saat diproyeksikan pada salah satu garis tengah lingkaran. Gaya yang bekerja pada gerak ini berbanding lurus dengan simpangan benda dan arahnya menuju ke titik setimbangnya.

Getaran selaras sederhanaadalah gerak harmonis yang grafiknya merupakan sinusoidal dengan frekuensi dan amplitude tetao.

Periode atau waktu getar (T) adalah selang waktu yang diperlukan untuk melakukan satu getaran sempurna (detik)

Frekuensi (f) adalah jumlah getaran yang dilakukan dalam satu detik atau perioda (Hz) f = n/t

Hubungan ferkuensi dan periode f = 1/T

Simpangan atau simpang getar (Y) adalah jarak yang ditempuh bendaterhadap titik kesetimbangan.

–                     Simpangan maksimum atau amplitude (A) adalah simpangan maksimum yang dicapai benda dengan A = Ymax

 

http://tentangsaya-santi.blogspot.com/2011/11/getran-selarashtml?m=1

 

Gerak harmonik sederhana

Gerak harmonik sederhana adalah gerak bolak – balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan[1].

Jenis Gerak Harmonik Sederhana

Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu[1] :

  • Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U, gerak horizontal / vertikal dari pegas, dan sebagainya.
  • Gerak Harmonik Sederhana (GHS) Angular, misalnya gerak bandul/ bandul fisis, osilasi ayunan torsi, dan sebagainya.

Beberapa Contoh Gerak Harmonik Sederhana

  • Gerak harmonik pada bandul

 

 

Gerak harmonik pada bandul

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya, maka benda akan dian di titik keseimbangan B[2]. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A[2]. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana[2].

 

  • Gerak harmonik pada pegas

 

 

Gerak vertikal pada pegas

Semua pegas memiliki panjang alami sebagaimana tampak pada gambar[2]. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang)[2].

Besaran Fisika pada Ayunan Bandul

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode[3]. Periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran. Benda dikatakan melakukan satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut. Satuan periode adalah sekon atau detik[3].

Frekuensi (f)

Frekuensi adalah banyaknya getaran yang dilakukan oleh benda selama satu detik, yang dimaksudkan dengan getaran di sini adalah getaran lengkap[3]. Satuan frekuensi adalah hertz[3].

Hubungan antara Periode dan Frekuensi

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah[3] :

 

Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut[3] :

 

 

Amplitudo

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan[3].

Gaya Pemulih

Gaya pemulih dimiliki oleh setiap benda elastis yang terkena gaya sehingga benda elastis tersebut berubah bentuk[4]. Gaya yang timbul pada benda elastis untuk menarik kembali benda yang melekat padanya di sebut gaya pemulih[4].

 

Gaya Pemulih pada Pegas

Pegas adalah salah satu contoh benda elastis[4]. Oleh sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali pada keadaan setimbangnya mula- mula apabila gaya yang bekerja padanya dihilangkan[4]. Gaya pemulih pada pegas banyak dimanfaatkan dalam bidang teknik dan kehidupan sehari- hari[4]. Misalnya di dalam shockbreaker dan springbed[4]. Sebuah pegas berfungsi meredam getaran saat roda kendaraan melewati jalan yang tidak rata[4]. Pegas – pegas yang tersusun di dalam springbed akan memberikan kenyamanan saat orang tidur[4].

 

Hukum Hooke

 

 

Robert Hooke

Jika gaya yang bekerja pada sebuah pegas dihilangkan, pegas tersebut akan kembali pada keadaan semula[5]. Robert Hooke, ilmuwan berkebangsaan Inggris menyimpulkan bahwa sifat elastis pegas tersebut ada batasnya dan besar gaya pegas sebanding dengan pertambahan panjang pegas[5]. Dari penelitian yang dilakukan, didapatkan bahwa besar gaya pegas pemulih sebanding dengan pertambahan panjang pegas. Secara matematis, dapat dituliskan sebagai[5] :

, dengan k = tetapan pegas (N / m)

Tanda (-) diberikan karena arah gaya pemulih pada pegas berlawanan dengan arah gerak pegas tersebut.

 

Susunan Pegas

Konstanta pegas dapat berubah nilainya, apabila pegas – pegas tersebut disusun menjadi rangkaian[5]. Besar konstanta total rangkaian pegas bergantung pada jenis rangkaian pegas, yaitu rangkaian pegas seri atau paralel[5].

 

  • Seri / Deret

Gaya yang bekerja pada setiap pegas adalah sebesar F, sehingga pegas akan mengalami pertambahan panjang sebesar dan . Secara umum, konstanta total pegas yang disusun seri dinyatakan dengan persamaan[5] :

, dengan kn = konstanta pegas ke – n.

 

  • Paralel

Jika rangkaian pegas ditarik dengan gaya sebesar F, setiap pegas akan mengalami gaya tarik sebesar dan , pertambahan panjang sebesar dan [5]. Secara umum, konstanta total pegas yang dirangkai paralel dinyatakan dengan persamaan[5] :

ktotal = k1 + k2 + k3 +….+ kn, dengan kn = konstanta pegas ke – n.

Gaya Pemulih pada Ayunan Bandul Matematis

 

 

Ayunan Bandul Matematis

Ayunan matematis merupakan suatu partikel massa yang tergantung pada suatu titik tetap pada seutas tali, di mana massa tali dapat diabaikan dan tali tidak dapat bertambah panjang[6]. Dari gambar tersebut, terdapat sebuah beban bermassa tergantung pada seutas kawat halus sepanjang dan massanya dapat diabaikan. Apabila bandul itu bergerak vertikal dengan membentuk sudut , gaya pemulih bandul tersebut adalah [6]. Secara matematis dapat dituliskan[6] :

 

Oleh karena , maka :

 

 

Persamaan, Kecepatan, dan Percepatan Gerak Harmonik Sederhana

Persamaan Gerak Harmonik Sederhana

Persamaan Gerak Harmonik Sederhana adalah[6] :

 

Keterangan :

Y = simpangan

A = simpangan maksimum (amplitudo)

F = frekuensi

t = waktu

Jika posisi sudut awal adalah , maka persamaan gerak harmonik sederhana menjadi [6]:

 

 

Kecepatan Gerak Harmonik Sederhana

Dari persamaan gerak harmonik sederhana

Kecepatan gerak harmonik sederhana[6] :

 

 

Kecepatan maksimum diperoleh jika nilai atau , sehingga :

 

Kecepatan untuk Berbagai Simpangan

 

Persamaan tersebut dikuadratkan

, maka[6] :

 

…(1)

Dari persamaan :

…(2)

Persamaan (1) dan (2) dikalikan, sehingga didapatkan :

 

Keterangan :

v =kecepatan benda pada simpangan tertentu

= kecepatan sudut

A = amplitudo

Y = simpangan

 

Percepatan Gerak Harmonik Sederhana

Dari persamaan kecepatan : , maka[6] :

 

 

Percepatan maksimum jika atau = 900 =

 

 

Keterangan :

a maks = percepatan maksimum

A = amplitudo

= kecepatan sudut

id.wikipedia.org/wiki/Gerak_harmonik_sederhana

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s